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Spontaneous spiral formation in two-dimensional oscillatory media
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Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky
reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is con-
nected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase
surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to
spontaneous spiral formation and phase waves.@S1063-651X~99!12708-9#

PACS number~s!: 82.20.Mj, 47.54.1r, 82.20.Wt, 87.23.Cc
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Spiral waves of excitation are observed in living and no
living systems, such as the aggregation of theDictyostelium
discoideumslugs@1#, Ca21 waves in the cytoplasm ofXeno-
pus laevisoocytes@2#, catalytic CO oxidation on a Pt~110!
surface @3#, and the Belousov-Zhabotinsky~BZ! reaction
@4,5#. However, in many cases the origin of their sponta
ous appearance is not known. Particular studies of the
reaction have characterized the appearance of spiral w
under special conditions. It has been shown that the num
of spirals can depend strongly on the excitability and cellu
structure of the reaction media@6#. Geometrical constraints
together with heterogeneous refractory properties can
rise to rotating vortices@7,8#. In ‘‘numerical’’ excitable me-
dia, turbulent spirals are reported in a discrete model sh
ing analogy to cardiac physiology@9#, and in a modified
FitzHugh-Nagumo model with delayed-inhibitor productio
@10#. A pair of singular points with zero amplitude in osci
latory media is shown to create a nonuniform phase distr
tion that develops into a spiral wave@11#.

Here we present computational studies of pattern form
tion in spatially distributed BZ reaction models with an em
phasis on identifying some conditions that lead to sponta
ous spiral formation. We consider a two-dimension
reaction medium, which initially contains only the immob
lized catalyst. Then, the reaction medium is in contact w
an ideal reservoir containing the other reactants for the
reaction~excess of BrO3

2 ,H1,Br2, malonic acid, and othe
species!. The lateral diffusion of reactants in the reactio
medium is allowed to occur through a set of randomly d
tributed discrete points. Under the present conditions,
reaction is initiated when the reactants come into con
with the catalyst and the characteristic oscillations be
spontaneously. We show that the spatial coupling of both
diffusion of the reactants and the oscillatory kinetics giv
rise to intricate pattern formation including rotating spir
segments and phase waves.

The reaction-diffusion model is based on the Tyson-F
scaling of the two-variable Oregonator@12–14#. In order to
account for the diffusion of reactants, one more equatio
added to the model. The resulting three-variable system
given by
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û2q
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whereu and v describe the concentrations of HBrO2 ~acti-
vator! and oxidized catalyst~inhibitor!, respectively, and
¹25(]2/]x2)1(]2/]y2) is the two-dimensional Laplacian
operator. Termse, q, andf are the standard parameters of t
Tyson-Fife model@13,14#, andDu is the linear diffusion co-
efficient of HBrO2. Variabler stands for the excitability rel-
evant to the concentrations of the BZ reactants, andDr is its
corresponding linear diffusion coefficient. For simplicity, w
introduce û5ur which models the linear coupling of th
excitability and the reaction dynamics.

The main idea in the implementation of the model is th
there are two types of diffusion sites on the integration gr
We define a site as one grid point~areaD2 in dimensionless
units!. Any given site is anopen site, i.e., it is connected to
the reservoir of reactants, with probabilityp, and aclosed
site with probability 12p. Therefore, the value ofr at the
open sites is kept at the maximum valuer max51 and constant
throughout the simulation. In the initial state, the closed s
are given the valuer min50. For any definite system size wit
0,p<1, the asymptotic solution of Eqs.~1–3! converges to
that of the original two-variable Oregonator. Intuitively, it
clear that the saturated state is obtained faster with hig
probabilities ofp.

The kinetic parameters in our model were chosen a
combination of Tyson’s ‘‘Lo’’ and Field-Fo¨rsterling values:
q50.002 ande50.05 @14–16#. Since we are interested i
spontaneous pattern formation, the bifurcation parametf
was kept in oscillatory domainf <1.60. If we consider soft-
silica ~water-glass! gel, the ratio of the diffusion coefficient
Dr /Du can be set at unity. In another gel, such as hard m
soporous silica gel~pore diameter appoximately 40 Å!, the
diffusion coefficients depend on the size of the hydrated m
1512 © 1999 The American Physical Society
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ecule@17,18#. However, in Eq.~3! it is inclusively set that all
the reactants have the same diffusivity. Therefore, only
case of equal diffusivities is considered.

Figure 1 shows typical examples of the simulations
Eqs. ~1!–~3!. With p50.0100, the long-term behavior i
characterized by chaotic spiral turbulence@Fig. 1~a!#. How-

FIG. 1. Two-dimensional simulations of pattern formation w
varying open diffusion site probabilities. Two images are shown
each example. The left-hand images show the dimensionless
centrations of the propagatoru with white mapped to the highes
value and black assigned to the steady-state value. On the r
black indicates the open diffusion sites. The open diffusion
probability p in each case isp50.0100 ~a!; p50.0625 ~b!; p
50.0750~c!; andp50.1500~d!. The finite difference form of Eqs
1–3 was integrated on a two-dimensional rectangular grid~periodic
boundary conditions! with the forward Euler method using the sta
dard five-point approximation for the Laplacian operator@34#. Pa-
rameters:e50.05,q50.002, f 51.15,Du5Dr51, grid size 512
3512, grid spacingD51/4, time stepdt57.812531024. The
snapshots were collected after minimum 103104 iterations. De-
creasing the time step by a factor of 3 did not alter the simula
behavior.
e

f

ever, increasingp to 0.0625 decreases substantially the nu
ber of the spiral segments@Fig. 1~b!#. Increasingp further on
changes remarkably the qualitative behavior of the syst
Figure 1~c! shows spontaneous patterns arising from r
domly distributed nucleation sites withp50.0750. The ac-
tivity resembles circular patterns, but since the nucleat
sites are rather closely packed, the overall behavior is m
like a mixture of stochastic oscillating domains and pha
waves. Oncep is brought high enough, e.g.,p50.1500, all
of the distinguishable patterns disappear and the long-t
behavior is characterized by large oscillating domains@Fig.
1~d!#.

Simulations carried out to determine the effects of t
open site probability and excitability on pattern formatio
are summarized in Fig. 2. The phase diagram shows tha
characteristic patterns were observed withp above some
critical value. Once a condition is selected,f 51.50, pattern
formation with increasingp goes from phase waves to spira
to phase waves and to oscillations. In a few cases at lowp,
phase waves preceded the appearance of spirals. Thef value
clearly affects the point of transition from one phase to a
other, although no substantial shifts were observed w
these parameters.

The turbulent state accompanied with rotating spirals w
subjected to closer examination. Shown in Fig. 3 is the nu
ber of spirals as a function ofp ~denoted byN). It can be
clearly seen that there is a specificpN,max where the maxi-
mum number of spirals is exhibited. Withf 51.05 this value
is pN,max'0.0250. Whenf is increased to 1.30,pN,max
'0.0275, and withf 51.60, pN,max'0.0300. The maximum
packing of spirals was obtained with the lowest value of
51.05 investigated. As thef value increases, the maximum
packing of spirals can appear at higherp.

The underlying mechanism responsible for the patt
formation in this model can be explained by considering
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FIG. 2. Phase diagram showing pattern formation as a func
of diffusion site probability andf value. Parameters are the same
in Fig. 1, except that grid size is 2003200. Simulations that re-
quired more than 153104 iterations to reach 99% saturation lev
of the reactants were excluded. Symbols:s, phase waves;d, spi-
rals; andh, oscillations.
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role of oscillations emitted from isolated clusters of op
sites. Figure 4 shows how the phase difference in oscillati
can be induced significantly depending on the effective s
of a cluster of open diffusion sites. Oscillations begin imm
diately from an infinite cluster~cluster sizeS5`, i.e., ini-
tially homogeneous system! and in this example the period i
T54.9860.02 @Fig. 4~a!#. The oscillations in the extrem
opposite case of single isolated open site (S51) start slowly
after a long quiescent state@Fig. 4~b!#. Once the reactant
have spread over the critical nucleation size~characterized in
@19#!, the active domain can support full oscillations and t

FIG. 3. Number of spiralsN plotted as a function ofp. The f
value in each case isf 51.05 (s), f 51.30(n), and f
51.60 (h). Other parameters as in Fig. 1.N was determined by
counting the vortices after a minimum of 103104 iterations.

FIG. 4. Time traces of oscillating concentrations arising fro
isolated and symmetrical clusters of open diffusion sites. The c
ter sizes areS5` ~a!; S51, i.e., single-diffusion site~b!; S59,
i.e., a cluster of 333 sites~c!. Kinetic and numerical parameter
are as in Fig. 1, exceptf 51.05.
s
e
-

e

phase difference compared to the homogeneous system
comes approximatelyT/3. The dephasing is very sensitive
the cluster size, which can be seen from the resulting ph
difference approximatelyT/4 betweenS51 andS59 @Figs.
4~b! and 4~c!#. There are also detectable alterations in t
oscillation periods during the initial evolution.

At very low p, e.g.,p,0.001, the clusters of open site
are nearly isolated from each other and the coupling len
between the clusters is long. Therefore, the reaction dom
can enlarge without perturbations from other clusters. The
fore, only oscillations are observed and no symmetry bre
ing occurs~data not shown!. When the mean cluster size an
the cluster perimeter increase, the diffusion from a cluste
its surroundings becomes faster in comparison with the
cillation period. Now the kinetic conditions and the phase
the oscillation can become remarkably different between
geometric center of the cluster area and the surrounding
dium. This is the condition under which the dephasing wa
appears@20#. Thus the dephasing of the oscillations in th
spatial domain and the inherent refractory properties of
BZ reaction provide a foundation for the evolution of pha
waves.

Based on these observations, we hypothesize that sp
appear when the deviations in cluster sizes are optimal
generating an ensemble of dephased oscillating doma
When these domains expand and become spatially coup
the singularities in the spatial phase distribution@11# and the
interaction of the phase wave fronts due to refractory a
vulnerable properties@21–23# can form spiral cores. In ad
dition, the differences in the oscillation periods~which can
be seen in Fig. 4! enhance the mechanism due to vulnerab
ity. Since the spirals in active media are high-frequency s
sustaining structures, they suppress the competing bulk
cillations and the system becomes dominated by rota
vortices. At highp, e.g.,p>0.200, the clusters are large an
the system is quickly saturated with reactants. Thus dep
ing cannot occur to any significant degree and no distinc
patterns evolve.

The mechanism for pattern formation described here
lies on the diffusion of reactants in an active non-linear
action environment. It can be associated with several
systems ranging from fundamental physico-chemical mod
@24# to signal transport phenomena in cell activation@25,26#
to explosive crystallization phenomena in amorphous fil
@27#. Phenomenologically, the model is analoguos to a co
monplace BZ experiment, in which reaction solutions a
poured on catalyst-loaded gel@17#, vycor glass@18#, or syn-
thetic membranes@28#. Since the surface of the porous cat
lyst medium is never ideally homogeneous, it can gene
random alterations of diffusion properties in spatial domai
As for the liquid phase, where the first BZ experiments we
performed@4,5# , localized and random hydrodynamic force
can account for the generation of singularities in the spa
phase distribution, thus giving rise to spontaneous sp
waves.

Analogues of spiral waves in three dimensions are sc
waves@29,30#. Inevitably, an extended version of this mod
with three spatial dimensions can be helpful to study th
spontaneous appearance. Chemical helix waves have
found to form spontaneously in a thin tube, filled wi
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catalyst-immobilized gel, whose open ends are in con
with BZ reactants@31#. Once a spiral is initiated on either o
the two-dimensional surfaces, it can develop into a helico
wave with concentration gradients along the cylindrical ax
This scenario, which is in accordance with our model, h
nc

i,
ct

al
.
s

been predicted theoretically@32# and it is also seen in a bio
logical medium@33#.
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